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Abstract 

Effective waste management has become an urgent priority due to escalating environmental concerns and increasing 

urbanization. Traditional systems, which often rely on manual classification and operational inefficiencies, are 

increasingly being supplemented or replaced by intelligent machine learning (ML) models. However, the 

performance of these models largely depends on the quality of data preprocessing and accurate label generation. This 

study introduces an innovative approach to developing a machine learning-based waste management system, 

emphasizing the importance of robust data preprocessing techniques and strategic labeling for supervised learning 

tasks. We present a comparative evaluation of preprocessing methods, propose a novel labeling schema, and assess 

their impact across multiple ML algorithms. The results demonstrate significant performance improvements, 

highlighting the potential for more sustainable, automated, and intelligent waste classification and decision-making 

systems. 

1. Introduction 

1.1 Background 

Waste management is a critical component of urban sustainability. Cities around the world face increasing challenges 

related to waste generation, segregation, collection, and recycling. Traditional waste classification methods—manual, 

labor-intensive, and prone to errors—are insufficient in handling the complexity and volume of modern urban waste. 

Machine learning (ML), with its ability to learn from data and make intelligent decisions, has emerged as a promising 

solution. Applications of ML in waste management include image-based waste classification, anomaly detection in 

disposal patterns, and optimization of collection routes. However, the effectiveness of these systems is contingent 

upon the quality and integrity of the data on which they are trained. 

1.2 Motivation and Problem Statement 

Despite growing interest in ML for waste management, a significant bottleneck exists in the data preparation stages—

specifically in preprocessing and labeling. Raw datasets often contain noise, inconsistencies, missing values, and 

ambiguous labels, all of which negatively impact model accuracy. Moreover, many existing systems lack a 

standardized protocol for categorizing waste, resulting in poor generalizability and scalability. 
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This paper aims to fill that gap by: 

 Developing a rigorous preprocessing pipeline for waste data (images and sensor data). 

 Introducing a well-defined labeling strategy to improve classification accuracy. 

 Evaluating the impact of preprocessing and labeling quality on ML model performance. 

 

2. Related Work 

2.1 Waste Classification with Machine Learning 

Previous studies have utilized convolutional neural networks (CNNs) and traditional classifiers such as Random 

Forest (RF) and Support Vector Machines (SVM) for waste type prediction. Examples include: 

 TrashNet dataset applied to CNN architectures like ResNet and VGGNet. 

 Sensor-based datasets analyzed using decision trees and ensemble learning. 

These models have shown promise but often suffer from overfitting and poor generalization due to inconsistent or 

imprecise labels. 

2.2 Importance of Preprocessing 

In ML pipelines, preprocessing involves cleaning, normalizing, transforming, and encoding raw data. For waste 

datasets, preprocessing steps often include: 

 Resizing and normalizing images. 

 Filling missing sensor readings. 

 Removing irrelevant or redundant features. 

Inadequate preprocessing can lead to suboptimal training and model instability. 

2.3 Labeling Challenges 

Labeling waste data is complex due to overlapping categories (e.g., biodegradable vs. recyclable), label ambiguity 

(e.g., mixed materials), and lack of domain expertise. Weak labeling often results in misleading training signals, 

severely affecting performance. 

Our research uniquely focuses on enhancing these critical early-stage processes. 

 

3. Methodology 

3.1 Dataset Description 

We utilize a hybrid dataset consisting of: 
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 Image Data: 3,000+ waste images across 6 classes: plastic, metal, glass, organic, paper, and mixed. 

 Sensor Data: IoT sensor logs from smart bins measuring parameters like weight, type, odor level, and 

timestamp. 

Each entry is tagged manually and verified by environmental experts. 

3.2 Preprocessing Pipeline 

3.2.1 For Image Data: 

 Resizing: All images resized to 224×224 pixels for CNN compatibility. 

 Normalization: Pixel values scaled between [0,1]. 

 Augmentation: Random flips, rotation, and brightness variation to increase robustness and reduce overfitting. 

 Noise Removal: Median filtering for blurry or low-resolution images. 

3.2.2 For Sensor Data: 

 Missing Value Imputation: Median strategy for missing weight/odor readings. 

 Feature Scaling: Min-max normalization applied. 

 Outlier Detection: Z-score filtering to eliminate anomalies. 

 Time Series Smoothing: Moving average to reduce temporal volatility. 

3.3 Label Engineering Strategy 

We introduced a multi-level labeling approach: 

 Level 1: Broad category (e.g., organic, inorganic). 

 Level 2: Specific waste type (e.g., plastic bottle, food waste). 

 Level 3: Disposal type recommendation (e.g., recycle, compost, landfill). 

Label verification was performed by two independent reviewers for quality assurance. Ambiguous items were flagged 

and relabeled using consensus. 

3.4 Machine Learning Models 

We tested the pipeline across: 

 Traditional ML: Random Forest (RF), Support Vector Machine (SVM), k-Nearest Neighbors (k-NN). 

 Deep Learning: Convolutional Neural Networks (CNN), Transfer Learning using MobileNet and ResNet50. 

 Hybrid Models: Combined sensor and image input using multi-modal architectures. 

Models were evaluated using stratified 80/20 train-test splits and 5-fold cross-validation. 

 

4. Experimental Results 

4.1 Performance Metrics 
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We used the following metrics: 

 Accuracy: Percentage of correctly classified instances. 

 Precision, Recall, F1-Score: Evaluated per class to handle class imbalance. 

 Confusion Matrix: For error analysis. 

 Training Time and Inference Speed: For deployment feasibility. 

4.2 Results Before and After Preprocessing 

Model Accuracy (Raw Data) Accuracy (Processed Data) 

SVM 63.4% 76.2% 

RF 68.5% 82.1% 

CNN (Custom) 71.2% 87.5% 

ResNet50 75.4% 91.6% 

Data preprocessing improved model performance by up to 18% in accuracy. Noise removal and normalization had 

the highest impact. 

4.3 Impact of Label Engineering 

We evaluated models with and without hierarchical labeling. 

Labeling Strategy Accuracy F1-Score 

Flat Labeling 81.3% 78.4% 

Hierarchical Labeling 89.7% 87.2% 

Hierarchical labeling provided richer semantic context, improving model learning and generalization. 

4.4 Multi-Modal Input Performance 

Combining sensor and image data in a hybrid CNN + MLP model gave the best performance: 

 Accuracy: 93.5% 

 Precision: 92.1% 

 Recall: 94.3% 

 F1-Score: 93.2% 

 

5. Discussion 

5.1 Benefits of Robust Preprocessing 

Our study reinforces that thoughtful preprocessing: 

 Reduces noise and bias in training data. 
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 Enhances learning efficiency. 

 Leads to faster convergence and improved generalization. 

5.2 Importance of Intelligent Labeling 

Labels are not just ground truth—they are the foundation of model learning. Poor labels can be more damaging than 

missing data. Our hierarchical scheme: 

 Reduces misclassification. 

 Enables multi-task learning (e.g., classification + recommendation). 

 Scales better with complex datasets. 

5.3 Limitations 

 Manual labeling is time-consuming. 

 Sensor reliability issues may affect real-time deployment. 

 Image-based classification struggles with mixed-material waste. 

5.4 Ethical and Environmental Implications 

Automated waste classification systems can: 

 Reduce human exposure to hazardous waste. 

 Improve recycling efficiency. 

 Minimize landfill overuse. 

However, model misuse or poor deployment could lead to unintended consequences, such as misdirected waste 

streams. 

 

6. Conclusion and Future Work 

This research presents a comprehensive approach to building an intelligent waste management system powered by 

machine learning, with a strong emphasis on data preprocessing and labeling. Our experiments confirm that these 

foundational steps significantly affect overall system performance. The integration of hierarchical labels and multi-

modal data inputs further enhances the system's robustness and accuracy. 

Future Directions: 

 Expand dataset with real-time streaming data. 

 Use federated learning to train models without centralized data collection. 

 Deploy edge AI on smart bins for on-device classification. 

 Integrate active learning for continuous label improvement. 
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